Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 781, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278783

RESUMO

Synthetic microbial communities have emerged as an attractive route for chemical bioprocessing. They are argued to be superior to single strains through microbial division of labor (DOL), but the exact mechanism by which DOL confers advantages remains unclear. Here, we utilize a synthetic Saccharomyces cerevisiae consortium along with mathematical modeling to achieve tunable mixed sugar fermentation to overcome the limitations of single-strain fermentation. The consortium involves two strains with each specializing in glucose or xylose utilization for ethanol production. By controlling initial community composition, DOL allows fine tuning of fermentation dynamics and product generation. By altering inoculation delay, DOL provides additional programmability to parallelly regulate fermentation characteristics and product yield. Mathematical models capture observed experimental findings and further offer guidance for subsequent fermentation optimization. This study demonstrates the functional potential of DOL in bioprocessing and provides insight into the rational design of engineered ecosystems for various applications.


Assuntos
Ecossistema , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentação , Xilose/química , Glucose
2.
J Agric Food Chem ; 70(38): 12085-12094, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36103687

RESUMO

Issatchenkia orientalis, exhibiting high tolerance against harsh environmental conditions, is a promising metabolic engineering host for producing fuels and chemicals from cellulosic hydrolysates containing fermentation inhibitors under acidic conditions. Although genetic tools for I. orientalis exist, they require auxotrophic mutants so that the selection of a host strain is limited. We developed a drug resistance gene (cloNAT)-based genome-editing method for engineering any I. orientalis strains and engineered I. orientalis strains isolated from various sources for xylose fermentation. Specifically, xylose reductase, xylitol dehydrogenase, and xylulokinase from Scheffersomyces stipitis were integrated into an intended chromosomal locus in four I. orientalis strains (SD108, IO21, IO45, and IO46) through Cas9-based genome editing. The resulting strains (SD108X, IO21X, IO45X, and IO46X) efficiently produced ethanol from cellulosic and hemicellulosic hydrolysates even though the pH adjustment and nitrogen source were not provided. As they presented different fermenting capacities, selection of a host I. orientalis strain was crucial for producing fuels and chemicals using cellulosic hydrolysates.


Assuntos
Engenharia Metabólica , Xilose , Aldeído Redutase/genética , Sistemas CRISPR-Cas , D-Xilulose Redutase/genética , Etanol/metabolismo , Fermentação , Engenharia Metabólica/métodos , Nitrogênio/metabolismo , Pichia , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo
3.
Biotechnol J ; 16(11): e2100238, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418308

RESUMO

Simultaneous co-fermentation of glucose and xylose is a key desired trait of engineered Saccharomyces cerevisiae for efficient and rapid production of biofuels and chemicals. However, glucose strongly inhibits xylose transport by endogenous hexose transporters of S. cerevisiae. We identified structurally distant sugar transporters (Lipomyces starkeyi LST1_205437 and Arabidopsis thaliana AtSWEET7) capable of co-transporting glucose and xylose from previously unexplored oleaginous yeasts and plants. Kinetic analysis showed that LST1_205437 had lenient glucose inhibition on xylose transport and AtSWEET7 transported glucose and xylose simultaneously with no inhibition. Modelling studies of LST1_205437 revealed that Ala335 residue at sugar binding site can accommodates both glucose and xylose. Docking studies with AtSWEET7 revealed that Trp59, Trp183, Asn145, and Asn179 residues stabilized the interactions with sugars, allowing both xylose and glucose to be co-transported. In addition, we altered sugar preference of LST1_205437 by single amino acid mutation at Asn365. Our findings provide a new mechanistic insight on glucose and xylose transport mechanism of sugar transporters and the identified sugar transporters can be employed to develop engineered yeast strains for producing cellulosic biofuels and chemicals.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Glucose , Lipomyces/enzimologia , Proteínas de Transporte de Monossacarídeos/genética , Xilose , Arabidopsis/genética , Fermentação , Cinética , Lipomyces/genética , Saccharomyces cerevisiae/genética
4.
Biotechnol Bioeng ; 118(1): 372-382, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33030791

RESUMO

Lactic acid represents an important class of commodity chemicals, which can be produced by microbial cell factories. However, due to the toxicity of lactic acid at lower pH, microbial production requires the usage of neutralizing agents to maintain neutral pH. Zygosaccharomyces bailii, a food spoilage yeast, can grow under the presence of organic acids used as food preservatives. This unique trait of the yeast might be useful for producing lactic acid. With the goal of domesticating the organic acid-tolerant yeast as a metabolic engineering host, seven Z. bailii strains were screened in a minimal medium with 10 g/L of acetic, or 60 g/L of lactic acid at pH 3. The Z. bailii NRRL Y7239 strain was selected as the most robust strain to be engineered for lactic acid production. By applying a PAN-ARS-based CRISPR-Cas9 system consisting of a transfer RNA promoter and NAT selection, we demonstrated the targeted deletion of ADE2 and site-specific integration of Rhizopus oryzae ldhA coding for lactate dehydrogenase into the PDC1 locus. The resulting pdc1::ldhA strain produced 35 g/L of lactic acid without ethanol production. This study demonstrates the feasibility of the CRISPR-Cas9 system in Z. bailii, which can be applied for a fundamental study of the species.


Assuntos
Ácido Láctico/biossíntese , Engenharia Metabólica , Saccharomycetales , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Rhizopus oryzae/enzimologia , Rhizopus oryzae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
5.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269498

RESUMO

Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production.IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains.


Assuntos
Ácido Láctico/metabolismo , Transcrição Gênica/fisiologia , Zygosaccharomyces/fisiologia , RNA Fúngico/análise , RNA Mensageiro/análise , Análise de Sequência de RNA , Estresse Fisiológico , Zygosaccharomyces/genética
6.
Yeast ; 34(9): 359-370, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28556381

RESUMO

Zygosaccharomyces bailii is a non-Saccharomyces budding yeast known as one of the most aggressive food spoilage microorganisms, often isolated as a contaminant during wine fermentation, as well as from many acidic, high-sugar and canned foods. The spoilage ability relies on the yeast's unique feature of tolerating the most common preservatives such as sulphite, dimethyl dicarbonate, acetic acid and sorbic acid. Therefore, many studies have focused on the description of this peculiar tolerance with the aim of developing preventative measures against Z. bailii food spoilage. These studies demonstrated the involvement of diverse molecular and physiological mechanisms in the yeast resistance, comprising detoxification of preservatives, adaptation of the cytoplasmic pH and modulation of the cell wall/membrane composition. At the same time, the described traits unveiled Z. bailii as a novel potential workhorse for industrial bioprocesses. Here we present the yeast Z. bailii starting from important aspects of its robustness and concluding with the exploitation of its potential in biotechnology. Overall, the article describes Z. bailii from different perspectives, converging in presenting it as one of the most interesting species of the Saccharomycotina subphylum. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Farmacorresistência Fúngica , Contaminação de Alimentos/prevenção & controle , Conservantes de Alimentos/farmacologia , Zygosaccharomyces/efeitos dos fármacos , Ácido Acético/farmacologia , Adaptação Fisiológica , Dietil Pirocarbonato/análogos & derivados , Dietil Pirocarbonato/farmacologia , Fermentação , Alimentos em Conserva/microbiologia , Concentração de Íons de Hidrogênio , Ácido Sórbico/farmacologia , Sulfitos/farmacologia , Vinho/microbiologia , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
7.
PLoS Biol ; 15(5): e2002128, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28510588

RESUMO

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces parabailii, an interspecies hybrid that was formed by mating between 2 parents that differed by 7% in genome sequence and by many interchromosomal rearrangements. Surprisingly, Z. parabailii has a full sexual cycle and is genetically haploid. It goes through mating-type switching and autodiploidization, followed by immediate sporulation. We identified the key evolutionary event that enabled Z. parabailii to regain fertility, which was breakage of 1 of the 2 homeologous copies of the mating-type (MAT) locus in the hybrid, resulting in a chromosomal rearrangement and irreparable damage to 1 MAT locus. This rearrangement was caused by HO endonuclease, which normally functions in mating-type switching. With 1 copy of MAT inactivated, the interspecies hybrid now behaves as a haploid. Our results provide the first demonstration that MAT locus damage is a naturally occurring evolutionary mechanism for whole-genome duplication and restoration of fertility to interspecies hybrids. The events that occurred in Z. parabailii strongly resemble those postulated to have caused ancient whole-genome duplication in an ancestor of Saccharomyces cerevisiae.


Assuntos
Evolução Biológica , Duplicação Gênica , Genoma Fúngico , Hibridização Genética , Zygosaccharomyces/genética , Fertilidade/genética , Rearranjo Gênico , Inativação Gênica , Genes Fúngicos Tipo Acasalamento/genética , Haploidia , Íntrons , Perda de Heterozigosidade
8.
FEMS Yeast Res ; 16(5)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27381983

RESUMO

The ability of Zygosaccharomyces bailii to grow at low pH and in the presence of considerable amounts of weak organic acids, at lethal condition for Saccharomyces cerevisiae, increased the interest in the biotechnological potential of the yeast. To understand the mechanism of tolerance and growth effect of weak acids on Z. bailii, we evaluated the physiological and macromolecular changes of the yeast exposed to sub lethal concentrations of lactic acid. Lactic acid represents one of the important commodity chemical which can be produced by microbial fermentation. We assessed physiological effect of lactic acid by bioreactor fermentation using synthetic media at low pH in the presence of lactic acid. Samples collected from bioreactors were stained with propidium iodide (PI) which revealed that, despite lactic acid negatively influence the growth rate, the number of PI positive cells is similar to that of the control. Moreover, we have performed Fourier Transform Infra-Red (FTIR) microspectroscopy analysis on intact cells of the same samples. This technique has been never applied before to study Z. bailii under this condition. The analyses revealed lactic acid induced macromolecular changes in the overall cellular protein secondary structures, and alterations of cell wall and membrane physico-chemical properties.


Assuntos
Fermentação , Ácido Láctico/metabolismo , Ácido Láctico/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Estresse Fisiológico , Zygosaccharomyces/efeitos dos fármacos , Zygosaccharomyces/fisiologia , Anaerobiose , Reatores Biológicos/microbiologia , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/fisiologia , Fenômenos Químicos , Meios de Cultura/química , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Propídio/análise , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Zygosaccharomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...